
Release 1.0. Copyright ã1992 by Onyschuk and Associates.

PriorityQueue

Inherits From: Object
Declared In: "PriorityQueue.h"

Class Description
A PriorityQueue is a collection of objects, ordered by unsigned integer priority.    The class provides
an interface that permits queueing, dequeueing, and counting of objects in a PriorityQueue.
PriorityQueues grow dynamically when new objects are added.    The default mechanism
automatically doubles the capacity of the PriorityQueue when it becomes full.

This is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 1, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.    See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Instance Variables
NODE *heap;
unsigned int top;
unsigned int size;

heap The heap managed by the PriorityQueue object.
top The actual number of objects in the heap.
size The total number of objects that can fit in currently allocated memory.

Method Types
Initializing a new PriorityQueue object ± init

± initCount:
Copying and freeing a PriorityQueue ± copyFromZone:

± free
Queueing and dequeueing objects by priority ± addObject:withPriority:

± removeObject
Returning highest priority in a PriorityQueue ± highestPriority

Counting objects ± count
Comparing and combining PriorityQueues ± isEqual:

± appendQueue:
Emptying a PriorityQueue ± empty

± freeObjects
Getting and setting the capacity of a PriorityQueue ± capacity

± setAvailableCapacity:
Sending messages to the objects ± makeObjectsPerform:

± makeObjectsPerform:with:
Archiving ± read:

± write:

Instance Methods
addObject:withPriority:

± addObject:anObject withPriority:(unsigned)aPriority

Inserts anObject into the priority Queue with priority aPriority, and returns self.    However, if
anObject is nil, nothing is inserterted and nil is returned.
See also: ± insertObject:at:, ± appendList:

appendQueue:
± appendQueue:(PriorityQueue *)otherQueue

Inserts all the objects in otherQueue into the receiving Queue, and returns self.

See also: ± addObject:withPriority:

capacity
± (unsigned int)capacity

Returns the maximum number of objects that can be stored in the Queue without allocating more
memory for it.    When new memory is allocated, it's taken from the same zone that was specified
when the Queue was created.
See also: ± count, ± setAvailableCapacity:

copyFromZone:
± copyFromZone:(NXZone *)zone

Returns a new PriorityQueue object with the same contents as the receiver.    The objects in the
Queue aren't copied; therefore, both Queues contain pointers to the same set of objects.    Memory
for the new Queue is allocated from zone.
See also: ± copy (Object)

count
± (unsigned int)count

Returns the number of objects currently in the PriorityQueue.
See also: ± capacity

empty
± empty

Empties the Queue of all its objects without freeing them, and returns self.    The current capacity
of the Queue isn't changed.
See also: ± freeObjects

free
± free

Deallocates the Queue object and the memory it allocated for the array of object ids.    However,
the objects themselves aren't freed.
See also: ± freeObjects

freeObjects
± freeObjects

Removes every object from the PriorityQueue, sends each one of them a free message, and
returns self.    The Queue object itself isn't freed and its current capacity isn't altered.
The methods that free the objects shouldn't have the side effect of modifying the Queue.
See also: ± empty

init
± init

Initializes the receiver, a new PriorityQueue object, and allocates memory for its array of object

ids.    It's initial capacity will be 1.    Minimal amounts of memory will be allocated when objects are
added to the Queue.    Or an initial capacity can be set, before objects are added, using the
setAvailableCapacity: method.    Returns self.
See also: ± initCount:, ± setAvailableCapacity:

initCount:
± initCount:(unsigned int)numSlots

Initializes the receiver, a new PriorityQueue object, by allocating enough memory for it to hold
numSlots objects.    Returns self.
This method is the designated initializer for the class.    It should be used immediately after
memory for the PriorityQueue has been allocated and before any objects have been assigned to it;
it shouldn't be used to reinitialize a Queue that's already in use.
See also: ± capacity

isEqual:
± (BOOL)isEqual:anObject

Compares the receiving PriorityQueue to anObject.    If anObject is a PriorityQueue with exactly the
same contents as the receiver, this method returns YES.    If not, it returns NO.
Two Queues have the same contents if they each hold the same number of objects and the ids in
each Queue are identical and occur in the same order.    Whether objects in both queues have
identical priorities has no bearing on the test for equality.

makeObjectsPerform:

± makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the PriorityQueue in reverse order (starting with the
last object and continuing backwards through the Queue to the first object), and returns self.    The
aSelector method must be one that takes no arguments.    It shouldn't have the side effect of
modifying the Queue.

makeObjectsPerform:with:
± makeObjectsPerform:(SEL)aSelector with:anObject

Sends an aSelector message to each object in the PriorityQueue in reverse order (starting with the
last object and continuing backwards through the Queue to the first object), and returns self.    The
message is sent each time with anObject as an argument, so the aSelector method must be one
that takes a single argument of type id.    The aSelector method shouldn't, as a side effect, modify
the Queue.

read:
± read:(NXTypedStream *)stream

Reads the PriorityQueue and all the objects it contains from the typed stream stream.

See also: ± write:

setAvailableCapacity:
± setAvailableCapacity:(unsigned int)numSlots

Sets the storage capacity of the PriorityQueue to at least numSlots objects and returns self.   
However, if the Queue already contains more than numSlots objects (if the count method returns
a number greater than numSlots), its capacity is left unchanged and nil is returned.

See also: ± capacity, ± count

write:
± write:(NXTypedStream *)stream

Writes the PriorityQueue, including all the objects it contains, to the typed stream stream.
See also: ± read:

